NSR综述:万有引力常数G的精确测量
pixabay
牛顿万有引力定律的发现是17世纪自然科学最伟大的成果之一。在万有引力定律(F=GmM/R2)中,描述引力作用强度的万有引力常数G是一个普适常数,不受物体大小、形状、组成成分等因素的影响,是一个与天体物理、地球物理和理论物理等密切相关的物理学基本常数。它的精确测量及相关研究在引力实验乃至整个实验物理学中均占据着重要地位。
最近,中山大学和华中科技大学的研究团队(薛超、刘建平、黎卿、邬俊飞、杨山清、刘祺、邵成刚、涂良成、胡忠坤以及罗俊)在《国家科学评论》(National Science Review, NSR)发表综述文章,对G值测量的历史、国际科技数据委员会在2014年(CODATA-2014)推荐收录的2000年之后的G值测量结果,以及该研究团队在2018年发表的由两种独立方法测量出的G值结果进行了较为全面的综述。
G 值测量的历史
随后,引力实验研究进入了一个新的阶段。两个世纪以来,各国科学家利用不同的方法,共测量出了两百多个G值,但测量精度仅提高约两个量级,且各个实验小组给出的G值在误差范围内也并不吻合。
事实上,虽然引力常数G是最早被认识的基本物理常数,但截至今日,其测量精度仍然是所有物理常数中最差的。根据国际科技数据委员会2014年的推荐值CODATA-2014,G值的相对精度仅约为0.005%,比其它基本物理常数差了至少两个数量级。
CODATA-2014及作者团队测量结果
CODATA-2014收录的2000年之后的11个G值测量结果,以及作者研究团队在2018年发表的由两种独立方法给出的G值测量结果
同时,文章还较为全面地描述了作者所在的研究团队,历时30多年研究、陆续公布的4个高精度G值测量结果(各实验装置如下图所示)。其中,2018年公布的结果利用两种相互独立的实验方法,给出了目前国际上最高精度的G值,相对精度优于0.0012%,且相互之间吻合程度达到0.0045%。对这两种由不同方法测得的G值进行比对,可以为寻找可能存在的系统误差、检验G值是否与实验方法相关等科学问题研究提供实验参考。
分析与讨论
对于未来的发展方向,主要目标依然是减小各测量结果间的离散程度,因此各国实验小组不但需要再次确认各自的实验结果,同时应加强国际合作交流,共同寻找不同方法之间存在的差异。
文末,作者呼吁越来越多的学者参与到G值测量中来,期望在不远的将来解决“测G困难”的难题,并发展其它的精确测量G值的新方法。
文章信息:[点击下方链接或“阅读原文”可获取全文]
Precision Measurement of the Newtonian Gravitational Constant
https://doi.org/10.1093/nsr/nwaa165